Transition-metal profiles in a multicrystalline silicon ingot

نویسندگان

  • Daniel Macdonald
  • Andrés Cuevas
  • A. Kinomura
  • L. J. Geerligs
چکیده

The concentrations of transition-metal impurities in a photovoltaic-grade multicrystalline silicon ingot have been measured by neutron activation analysis. The results show that the concentrations of Fe, Co, and Cu are determined by segregation from the liquid-to-solid phase in the central regions of the ingot. This produces high concentrations near the top of the ingot, which subsequently diffuse back into the ingot during cooling. The extent of this back diffusion is shown to correlate to the diffusivity of the impurities. Near the bottom, the concentrations are higher again due to solid-state diffusion from the crucible after crystallization has occurred. Measurement of the interstitial Fe concentration along the ingot shows that the vast majority of the Fe is precipitated during ingot growth. Further analysis suggests that this precipitation occurs mostly through segregation to extrinsic defects at high temperature rather than through solubility-limit-driven precipitation during ingot cooling. © 2005 American Institute of Physics. fDOI: 10.1063/1.1845584g

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of solidification interface shapes in a boron–phosphorus compensated multicrystalline silicon ingot via photoluminescence imaging

This paper introduces a method for estimating the shape of the solidification front along the height of a directionally-solidified multicrystalline silicon ingot. The technique uses net dopant density images, obtained on wafers via photoluminescence imaging under surface limited conditions, after the impact of grain boundaries is eliminated through an image processing procedure. By modeling the...

متن کامل

Hydrogenation effect on low temperature internal gettering in multicrystalline silicon

We have performed a comprehensive study into low temperature ( 500 °C) internal gettering in multicrystalline silicon (mc-Si). Two groups of as-grown mc-Si wafers from different ingot height positions were subjected to the same thermal treatments with surface passivation by either silicon nitride (SiNx:H) or a temporary iodine-ethanol (I-E) chemical solution . With either passivation scheme, l...

متن کامل

Response to Phosphorus Gettering of Different Regions of Cast Multicrystalline Silicon Ingots

Minority carrier lifetimes were measured to determine the effect of phosphorus gettering on cast multicrystalline silicon substrates from central and end regions of two different ingots. One ingot exhibited visibly inferior crystallographic structure, and consistently showed lower lifetimes. For the low quality ingot, wafers from the bottom region did not respond to gettering, whilst those from...

متن کامل

Improved iron gettering of contaminated multicrystalline silicon by high temperature phosphorus diffusion

The efficacy of higher-temperature gettering processes in reducing precipitated iron concentrations is assessed by synchrotron-based micro-X-ray fluorescence. By measuring the same grain boundary before and after phosphorus diffusion in a set of wafers from adjacent ingot heights, the reduction in size of individual precipitates is measured as a function of gettering temperature in samples from...

متن کامل

Imaging interstitial iron concentrations in boron-doped crystalline silicon using photoluminescence

Imaging the band-to-band photoluminescence of silicon wafers is known to provide rapid and high-resolution images of the carrier lifetime. Here, we show that such photoluminescence images, taken before and after dissociation of iron-boron pairs, allow an accurate image of the interstitial iron concentration across a boron-doped p-type silicon wafer to be generated. Such iron images can be obtai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005